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Abstract

It has recently been highlighted that the economic value of climate mitigation de-
pends sensitively on the slim possibility of extreme warming. This insight has been
obtained through a focus on the fat upper tail of the climate sensitivity probability
distribution. However, while climate sensitivity is undoubtedly important, what ul-
timately matters is transient temperature change. A focus on transient temperature
change stresses the interplay of climate sensitivity with other physical uncertain-
ties, notably effective heat capacity. In this paper we present a conceptual analysis
of the physical uncertainties in economic models of climate mitigation, leading to
an empirical application of the DICE model, which investigates the interaction of
uncertainty in climate sensitivity and the effective heat capacity. We expand on
previous results exploring the sensitivity of economic evaluations to the tail of the
climate sensitivity distribution alone, and demonstrate that uncertainty about the
system’s effective heat capacity also plays a very important role. We go on to discuss
complementary avenues of economic and scientific research that may help provide
a better combined understanding of the physical and economic processes associated
with a rapidly warming world.

1 Introduction

Recent studies have shown that economic analysis of climate change is sensitive to the
slim possibility of extreme warming. According to Weitzman (2009) a sufficiently large
(albeit still tiny) probability of extreme warming can make climate mitigation policies
infinitely valuable. The significance of this result has been debated but the implications
for integrated assessment modeling are clear; that the possibility of extreme warming
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should be accounted for. A number of IAM studies have pursued this issue (Ackerman
et al., 2010; Dietz, 2011; Pycroft et al., 2011).

In these studies, a sufficiently high realization of the climate sensitivity (defined
as the equilibrium surface warming that results from a doubling of atmospheric CO2

concentration) gives rise to extreme warming, which, depending on assumptions about
the damage function, can trigger substantial economic damages. If the probability of
drawing such a high value is sufficiently large—or the climate sensitivity distribution has
a ‘fat tail’ according to common usage—the possibility of extreme warming may come
to dominate the economic calculus. It is unfortunate, then, that there are compelling
reasons to describe our knowledge about the value of the climate sensitivity by a fat-
tailed probability density function (pdf), at best (Frame et al., 2005; Allen et al., 2006;
Weitzman, 2009; Roe and Baker, 2007; Baker and Roe, 2009). Although there is some
variability in the usage of the term, a fat-tailed distribution generally refers to one
where the density in the upper tail approaches zero more slowly than the exponential
distribution.

Beyond that it is fat, however, we do not actually know much about the shape of
the tail (Frame et al., 2005; Allen et al., 2006; Roe and Baker, 2007; Baker and Roe,
2009). We must face up to this fact if the probability of extreme warming can overwhelm
economic evaluation of climate policies. The existing IAM literature arguably fails to do
this, tending to work with a single fat-tailed climate sensitivity distribution (Ackerman
et al., 2010; Dietz, 2011; Hope, 2011). An alternative approach, suggested by Weitzman
(2012), would be to stress-test IAMs by comparing multiple fat-tailed distributions.
Weitzman did this very roughly with a toy model, although he considered uncertainty
about the whole distribution at once, making it difficult to infer the importance of
uncertainty about the tail. (Pycroft et al., 2011) went further by varying the upper 50%
of the pdf while holding constant the lower half of the distribution. One of the ways we
seek to advance the literature is to investigate the sensitivity of the economic value of a
mitigation policy to the shape of the tail of the pdf, while fixing everything except the
shape of the upper tail.

What matters, though, is not the probability that the climate sensitivity is high,
but the probability of extreme warming (Allen et al., 2006; Marten, 2011; Roe and
Bauman, 2012; Hof et al., 2012). Focusing solely on the climate sensitivity results in
a failure to give the requisite importance to other physical parameters that greatly
influence transient temperature change, notably the rate at which heat is taken up by the
oceans, a process encapsulated in the concept of “effective heat capacity”. The effective
heat capacity represents the amount of energy necessary to increase the Earth’s surface
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temperature by 1◦C, so a lower value means the temperature will rise faster in response
to a given energy input. The principal empirical contribution of this paper, therefore,
is our exploration of joint uncertainty about the climate sensitivity and effective heat
capacity. Low values of the heat capacity markedly increase the probability of extreme
warming, and greatly amplify the sensitivity of economic analyses.

We begin in section 2 by discussing the science of climate warming, and relating it to
our empirical experiments with the DICE IAM in section 3. We derive the fundamental
equation of transient temperature change in DICE from basic physical principles, be-
fore discussing the role of climate sensitivity pdfs from the literature and asking what
does uncertainty about the effective heat capacity imply for temperature forecasts? In
section 3 we consider the implications of these uncertainties for numerical evaluation of
mitigation policy. Section 4 concludes with a discussion of complementary avenues of
economic and physical science research that would most serve to improve future economic
evaluation of climate change.

2 The science of extreme warming

In IAMs, the climate component tends to be very simple relative to most physical climate
models. van Vuuren et al. (2011), Marten (2011) and others have evaluated the predictive
performance of the simple climate modules in IAMs. In order to study the economic
consequences of uncertainty about extreme warming in IAMs, it is helpful to first get
a conceptual handle on the underlying physical uncertainties that drive the economic
analysis. In this paper we employ the DICE model (Nordhaus, 2008), so our discussion
seeks to link its climate module to fundamental physical concepts, something that the
bulk of the IAM literature neglects. DICE is one of the the most widely studied IAMs.
In it economic damages from climate change depend exclusively on the global mean
temperature change. In DICE, this quantity is calculated using equation 1.

Tt = Tt−1 + ξ1

[
Ft −

F2×CO2

S
(Tt−1)− ξ3

(
Tt−1 − TLO

t−1

)]
(1)

Tt : Global mean surface temperature change at time t with respect to 1900
Ft : Radiative forcing at time t
F2×CO2 : Radiative forcing for a doubling of atmospheric CO2

S : Climate sensitivity
TLO

t : Temperature of the lower oceans at time t with respect to 1900
ξ1 : ‘speed of adjustment parameter’
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ξ3 : ‘coefficient of heat loss from the atmosphere to oceans’

To understand the physical basis of this equation, start by considering the planet’s
surface, lower atmosphere and oceans as “the system”—a box into which energy flows
in and out. In equilibrium the rate of energy input to the system (from the sun) equals
the rate of energy lost (through radiation to space) so the energy content remains con-
stant. Increasing atmospheric greenhouse gas concentrations represent a forcing which
decreases the rate of energy loss, leading to an increase in energy content until feedbacks,
including rising temperatures, increase the rate of energy loss again bringing the sys-
tem back into balance. Since we are principally interested in changes from an assumed
equilibrium state, the forcings, which decrease the rate of energy loss, can be thought
of as increasing the rate of energy input; the feedbacks being a consequential increase
in the rate of energy output. This is encapsulated by equation 2 (Andrews and Allen,
2008; Senior and Mitchell, 2000). The right hand side represents the overall rate of
energy input to the system: radiative forcing F , reduced by the increase in the rate of
energy output to space, the feedbacks, which are taken to be proportional to the surface
temperature change T . The left hand side represents the rate of change of the system’s
energy content, measured in terms of the change in surface temperature multiplied by
an effective heat capacity for the system as a whole.

Ceff
dT

dt
= F − λT (2)

Ceff : Effective heat capacity of the climate system
T : Surface temperature change from some equilibrium state
F : Radiative forcing
t : time
λ : a feedback parameter

Over short timeframes, decades not millennia, much of the excess energy input leads
to warming of the upper oceans (Levitus et al., 2000; Lyman et al., 2010). More slowly
the energy penetrates to the deep, or lower, oceans. An extension of the above model is
therefore to consider that our system includes not the whole ocean but only the upper
ocean, which is taken to be a well-mixed layer (and therefore warms uniformly), coupled
to a second box which represents the deep ocean and into which heat diffuses. The
deep ocean is usually not taken to be well-mixed but rather to have temperatures which
decrease with depth (Hansen et al., 1985; Frame et al., 2005). A simpler form of this
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extension, though, would assume that the deep ocean too is well-mixed and can be
represented by a single temperature, call it TLO. The flow of energy from the surface to
the lower oceans is then taken to be proportional to their temperature difference. With
this extension, we get equation 3. Note that T is still the surface temperature so the
heat capacity now relates only to the upper box.

Cup
dT

dt
= F − λT − β(T − TLO) (3)

Cup : Effective heat capacity of the upper oceans, land surface and atmosphere

Equations 2 and 3 both represent energy conservation, but in one- and two-box
systems respectively. Applying Euler’s method to discretize equation 3, and re-arranging
we obtain equation 4.

Tt = Tt−1 +
∆t
Cup

[
Ft−1 − λTt−1 − β(Tt−1 − TLO

t−1)
]

(4)

t : Now the number of the time-step not continuous time
∆t : length of the time-step

Consideration of equation 2 for the equilibrium response to doubling the atmospheric
CO2 concentrations shows that λ in equation 4 can be equated with F2×CO2

S in equation
1. We have thus arrived at a formulation that is almost identical to the temperature
equation in the DICE model (equation 1).1

The physical basis of equation 4 makes it easier to relate different sources of un-
certainty in equation 1 to the various sources of uncertainty discussed in the physical
science literature. We focus here on uncertainty about the climate sensitivity, S, and
the heat capacities, Ceff and Cup.

2.1 Climate sensitivity

The value of S is not known with certainty. Instead, over the last two decades a large
literature has emerged that seeks to quantify uncertainty about S via probability distri-

1The one difference in formulation between equation 1 and equation 4 is the presence of Ft in the
former as opposed to Ft−1 in the latter. In fact the calculation of F in DICE means that in equation 1 Ft

actually represents something closer to Ft+ 1
2
. This rather odd formulation appears to have come about

from efforts “to improve the match of the impulse-response function with climate models” (Nordhaus,
2008) and has been the subject of critical analysis that stems from the choice of discretization method
(Cai et al., 2012b,a).

5



butions. Many distributions have been published (see figure 2), along with a number of
review and meta-analysis papers utilizing collections of distributions (Meinshausen et al.,
2009). From this literature three stylized facts emerge. First, there are differences—at
times large—between the various estimates. Second, all have a large positive skew and
in most cases it satisfies the definition of a fat tail. Third, there are large differences
between the various estimates of the upper tail.

The pdfs generated represent different assessments of epistemic uncertainty, each
conditioned on a different set of assumptions (only some of which are usually made
explicit) and founded on different underlying observational and/or model data. It is
important to note, however, that S is being used as a proxy for λ which represents the
feedbacks relevant at some point in time and is state-, and therefore time-dependent; as
is S. The relevant distribution of S to use in an IAM will change over time within the
simulation as the strength of different feedback processes vary. (Consider, for instance,
the role of sea ice in the albedo feedback—this may be small for small increases in
temperature, large for temperatures when the sea ice rapidly declines and smaller again
when the area of remaining sea ice is small.) The foundation of some of the pdfs may
make them them more relevant in the short term, others in the longer term and still
others of limited relevance over the next 400 years or so; a time period typical of IAM
simulations. On top of this, each of the methods has methodological advantages and
disadvantages. Thus it is not possible to identify from the literature a single distribution
which is most suitable for us in an IAM.

Setting aside the issue of time dependence it is tempting to combine the various
estimates but this too is problematic. The distributions are not independent in terms
of either methodology or data constraints, yet the their degree of dependence is unclear.
Thus neither naive combination nor more complicated weightings can be relied upon to
give “the right” distribution. For the time being the upshot is to accept that the science
has produced many different distributions and the economics must accept relatively
large uncertainty, not just in the value of S, but in the uncertainty in the value of
S—particularly in the tails of the distribution. There are opportunities to narrow our
uncertainty for economic applications, but the first step must be to try to understand
what uncertainty about the tail shape implies for the robustness of the economic analysis.

2.2 Effective heat capacity

Examination of equation 1 suggests that uncertainty in transient temperature change is
dependent not just on climate sensitivity but also on uncertainty in the parameters ξ1
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and ξ3 (and also in F2×CO2 , although F2×CO2 is considered well known). Historically
the majority of the heat has remained in the upper oceans (Levitus et al., 2000; Lyman
et al., 2010), so we focus our attention on ξ1; ξ3 only being important for the transfer of
heat to the deep oceans.

Comparing equations 1 and 4 shows that ξ1 = ∆t
Cup

. The scientific literature does not
provide constraints on Cup directly, but Frame et al. (2005) present uncertainty estimates
for effective heat capacity, Ceff , giving 95% confidence intervals of (< 0.2GJm−2K−1, >

1.7GJm−2K−1) for the latter half of the 20th century.2 A first approximation of ξ1 from
the observational data would simply be ξ1 = ∆t

Ceff
, but this can be refined using values

from the first period of the DICE model to give the implied ratio of Cup to Ceff at the
beginning of the 21st century; a value unlikely to be substantially different to that in the
latter half of the 20th century and therefore comparable with observations. Equation 5,
based on equations 2 and 4, shows this relationship.

ξ1 =
∆t
Cup

≈
∆t
[
F1 −

F2×CO2
S T1

]
Ceff

[
F1 −

F2×CO2
S T1 − ξ3(T1 − TLO

1 )
] (5)

The default DICE value for ξ1 is 0.208, which translates into a value for Ceff of
1.8GJm−2K−1, on the high side of what the observations suggest is likely.3 A natural
question to ask, then, is what the consequences would be of assuming a lower heat
capacity.

With a lower heat capacity, a given energy input produces more rapid warming,
while the equilibrium temperature of the system is not affected. The main consequence,
then, is to ‘front-load’ warming. As figure 1 illustrates, this front-loading can more
than compensate for a lower climate sensitivity in the short term, producing higher
temperatures even with a lower climate sensitivity. Uncertainty about the value of the
effective heat capacity could therefore have important implications for the economic
analysis of climate change. For a given S, a lower effective heat capacity will tend to
lead to faster warming which could have very significant implications for the economic

2These values are indicative of those consistent with the most likely values of “attributable 20th
century warming”.

3The discussion of ξ1 above is conditioned on the value of ξ3 used in DICE. Uncertainty about the
value of ξ3 is only likely to have an important effect on the transient model temperatures in the longer
term. Additionally, the relation between ξ1 and Ceff in equation 5 is conditional on climate sensitivity,
but the variation is relatively small for sensitivities above 2◦ and the conclusion that the default value
is on the high side of what is credible is robust to all values of sensitivity; for sensitivities below about
2◦ the implied effective heat capacity is not consistent with observations at the 5% level for any value
of attributable 20th century warming (Frame et al., 2005).
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Figure 1: Transient temperature changes

Time-series of global mean temperature from the DICE model for two combinations of climate sensitivity and
effective heat capacity.

analysis of extreme warming scenarios.

3 The economics of extreme warming

In this section we empirically address the issues raised above. Our ultimate aim is to
investigate how sensitive the economic value of a representative mitigation policy is to
uncertainty about the shape of the tail of the climate sensitivity distribution and about
the effective heat capacity of the system. First, though, we investigate the impact of
uncertainty about only the tail shape the climate sensitivity pdf.

To evaluate the net economic benefits of mitigation, we conduct a typical comparison
between a business-as-usual emissions scenario and a scenario in which there is interven-
tion in the economy to abate emissions. The business-as-usual scenario is as standard in
DICE-2009, while our mitigation scenario controls emissions so as to prevent the mean
atmospheric concentration of CO2 from exceeding 500ppm in a stochastic set-up (see
supplementary information for details).

We begin by investigating uncertainty about the upper tail of the climate sensitivity
pdf. We take the standard deterministic version of DICE-2009 and replace the best guess
for the climate sensitivity parameter with a pdf so that Monte Carlo simulations can
be performed. We first fit a log-Normal pdf to the IPCC’s expert subjective confidence
interval (a mode of 3◦C with a density of 0.67 between 2◦C and 4.5◦C), plotted in both
panels of figure 2. For convenience, and because this is the upper bound of the IPCC
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likely interval, we speak of everything above 4.5◦C as the tail of the distribution. This
pdf has 0.25 density in the tail.

Figure 2: Distributions of the climate sensitivity

(a) Probability distributions of climate sensitivity produced by a number of recent studies (source: Meinshausen
et al. (2009)). The solid black line is a log-normal fit to the IPCC AR4 expert subjective confidence interval - see
text. (b) Black: as in (a), Blue: as black line but with the probability mass in the tail (i.e. above 4.5)redistributed
to reflect the Roe and Baker (2007) distribution, Green: as black line but with the probability mass in the tail)
redistributed to reflect the frequency distribution presented in Stainforth et al. (2005).

We then perturb this log-Normal pdf to obtain two further fat-tailed distributions,
by shifting probability mass around within the tail while keeping the distribution below
4.5◦C fixed. In addition to the tail of the log-Normal itself, which is among the thinnest
of fat-tailed distributions, we use the heavier tail of the distribution derived by Roe and
Baker (2007). As an intermediate between these two cases, we use the tail of the log-
logistic distribution fitted to simulation output from Stainforth et al. (2005).4 Note that,
because the mass in the tail is fixed, these two distributions will have lower densities
than the IPCC-distribution in the lower part of the tail, but higher densities in the upper
part of the tail that is typically associated with extreme warming. The resulting pdfs
are displayed in panel (b) of figure 2.

The Monte Carlo simulations run the DICE model out 400 years into the future
4We emphasize that Stainforth et al. (2005) makes no claim to provide a probability distribution;

simply representing the output of a GCM ensemble experiment. For the purpose of this work a log-
logistic fit to that distribution provides a useful illustrative distribution with tail properties in between
the others considered.
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Figure 3: Transient temperature change under varying climate sensitivity

Each blue line represents a run of DICE under the business-as-usual scenario, so more intense colouration can
be loosely interpreted as a higher probability density. The solid white line traces the mean of the distribution.
The vertical axis on the left-hand-side measures the transient temperature change, while the right-hand-axes
measure the corresponding instantaneous climate damages, calculated using Nordhaus’ (N) and our high (H)
damage functions respectively. Note that the trajectories of ∆T depicted here are obtained from runs of DICE
with H. Due to the climate-economy feedback in DICE, using N will result in lower damages in early periods and
consequently higher emissions and temperatures later on. Although the plot using N looks very similar (hence not
reported here), one should be aware that when changing damage function one does not only read off a different
number on the right-hand-axis but also obtain a different set of temperature trajectories.

for an ensemble of 100,000 climate sensitivities (see supplementary information). They
reveal how the distribution of transient temperature trajectories change when we use
a different pdf for the climate sensitivity (see figure 3). The lower quantiles and the
mode are of course fixed by design, but there is a clear fanning out of the upper tail,
which increases the mean of the distribution slightly. Comparable distributions can be
plotted with and without the mitigation policy. This gives us what we need to conduct a
standard, welfarist economic evaluation—i.e. we compute the expected discounted utility
of the two emissions scenarios, and the difference between them is the economic value
of mitigation. Technically, we measure the change in the stationary equivalent, defined
as the difference in welfare between the two constant consumption paths that produce
welfare equivalent to the expected values from each of the two emissions scenarios (see
supplementary information for details). We use a standard constant relative risk aversion
(CRRA) utility function with a coefficient of relative risk aversion of 1.5, and a pure rate
of time preference of 1.5%, both default values in DICE-2009. The results are reported
in table 1.

Reading first the column entitled ‘Nordhaus damages’, which describes the results for
the standard version of DICE-2009, notice that the shape of the tail does not appear to
matter much for the value of the policy. Going from the thinnest (IPCC) to the fattest
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Table 1: Value of 500ppm policy

Climate sensitivity distribution Increase in stationary equivalent (%)
Nordhaus damages High damages

IPCC AR4 0.31 0.47
Stainforth et al. (2005) 0.34 0.75
Roe and Baker (2007) 0.35 76.70

tail (Roe & Baker) increases the economic value of the policy by only 0.04 percentage
points. But these results are for Nordhaus’ specification of the damage function, which
has been criticized for being too sanguine about the economic impact of extreme warming
(Weitzman, 2012; Ackerman et al., 2010), the very scenario that interests us most.
The damage function is an especially disputed and speculative element of any IAM
because there are no data to constrain it at high temperatures. This makes it difficult
to adjudicate between these positions on empirical grounds, though one might perhaps
think it unreasonable that Nordhaus’ default function implies ‘only’ the equivalent of a
17% loss of global GDP for a temperature increase of 10◦C above the pre-industrial level,
and less than a 50% loss for a temperature increase of 20◦C. One cannot help but wonder
what tall tales need be imagined to account for such survival scenarios. Nordhaus’
damage function effectively assumes that catastrophic climate change is impossible.

It seems reasonable, then, for us to perform our experiments with an alternative
damage function too. In Nordhaus’ specification, climate change damages increase as a
quadratic function of temperature. To account for the potentially catastrophic conse-
quences of extreme warming, others have suggested employing a more convex damage
function (Weitzman, 2012; Ackerman et al., 2010). We achieved this by adding a higher-
order term, which returns very similar results to Nordhaus’ damage function for small
temperature increases but much higher damages for large temperature changes. Our
higher-order term corresponds to that used in Dietz and Asheim (2012, equation 9),
with the coefficient on the higher-order term assuming the value 0.082 (the mean value
in Dietz and Asheim, 2012). Others have proposed even more convex damage functions
(Weitzman, 2012).

As the right-most column of table 1 shows, with our ‘high’ damage function the
precise shape of the tail matters hugely for the value of the policy. In going from
the thinnest to the fattest tail, the economic value of the policy jumps from increasing
consumption by a mere 0.47%, to increasing it by fully 76.7%. This clearly illustrates the
role of the tail in economic analysis of climate change. Thus, provided we do not exclude
the possibility of a climatic catastrophe, as Nordhaus’ damage function effectively does,
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economic assessments of climate policy are highly sensitive to what is assumed about
the precise shape of the tail of the climate sensitivity distribution.

Until now, the discussion of uncertainty about extreme warming has focused exclu-
sively on the climate sensitivity. This reflects the primary focus in the economics and
physical climate science literatures. As we discussed in section 2, however, transient
temperature changes are also strongly influenced by the effective heat capacity of the
system. In particular, uncertainty about the heat capacity has a strong impact on our
ability to forecast nearer term transient temperatures. A lower heat capacity front-loads
warming, and consequently alters the time profile of economic benefits associated with
emissions abatement.

Figure 4: Transient temperature change under varying climate sensitivity and
effective heat capacity

As figure 3 but for three different values of the climate’s effective heat capacity.

DICE implicitly assumes an effective heat capacity of 1.8GJm−2K−1 (see section 2),
which is on the high side of what is considered plausible (Frame et al., 2005), and a higher
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effective heat capacity suppresses large temperature increases in the short term. This is
visible when we plot transient temperature change for heat capacities of approximately
1.2GJm−2K−1 and 0.6GJm−2K−1 (see figure 4), values closer to the median and lower
end of the distribution in Frame et al. (2005).5

The implications for the economic value of the policy are stark. Table 2 reveals a
dramatic change in the value of the policy when the heat capacity falls. Going from the
IPCC to the Stainforth tail multiplies the value of the policy several thousand times,
and as the tail gets fatter the value of the policy continues to snowball. Even a little
uncertainty about the tail shape of the climate sensitivity pdf, which may seem relatively
unimportant from a scientist’s perspective, becomes devastating for economic analysis.
A lower effective heat capacity results in a more rapid warming response to emissions
for a given climate sensitivity, which means not only that the mitigation policy is more
valuable, but also that the value becomes much more sensitive to assumptions about the
tail.

Table 2: Value of 500ppm policy with varying effective heat capacity

Climate sensitivity distribution Increase in stationary equivalent (%)
0.6GJm−2K−1 1.2GJm−2K−1 1.8GJm−2K−1

IPCC AR4 1.26 0.80 0.47
Stainforth et al. (2005) 49.63× 103 19.96× 102 0.75
Roe and Baker (2007) 75.74× 105 43.88× 104 76.70

The results in tables 1 and 2 are best understood in the context of the temperature
changes necessary to produce catastrophic economic damages. The economic criterion
used to value future consumption assumes the willingness to pay is extremely high to
avoid an outcome where consumption is extremely low. Any future periods with near-
zero consumption will therefore completely dominate the calculation of the value of the
policy, however far off in the future they are. A policy that can avert or even postpone
such extreme warming will appear immensely valuable. With Nordhaus’ damage func-
tion, damages rise very slowly as temperatures rise. Because of thermal inertia, there is
no value of the climate sensitivity (or reasonable combination of climate sensitivity and
effective heat capacity) that can produce sufficient temperature change to drive economic
output close to zero over the next 400 years. Consequently, uncertainty about the tail
shape is not all that important (for completeness, table 2 is replicated with Nordhaus’

5Even lower values of the heat capacity lead to numerical instability in the DICE model when com-
bined with low climate sensitivities, and thus require a reduction in the time-step applied. This has
limited our ability to explore results for still lower values of the heat capacity, because the time-step is
implicitly defined within multiple parameters and cannot be easily changed.
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damage function in the supplementary materials). With our high damage function, on
the other hand, damages rise faster with temperatures. As a consequence, it is possible
to reach sufficiently extreme temperatures under the business-as-usual scenario within
the modeling horizon, but not with the 500ppm policy in place. With a sufficiently
fat tail of the climate sensitivity pdf, therefore, our sample of climate sensitivities is
likely to include some high values that result in catastrophic warming under business-
as-usual. When there is the possibility of catastrophic warming, then, the value of the
policy derives almost exclusively from its ability to compress down the upper tail of the
distribution of transient temperature changes. The figures in table 2 therefore closely
correspond to the effects of the mitigation policy on the behaviour of the higher quantiles
of the distribution, as shown in figure 5.

Figure 5: Impacts of mitigation on the higher quantiles of transient tempera-
ture change

The three red lines in each panel trace the 95th, 99th, and 100th percentiles of the distribution of transient temper-
ature changes (in ascending order) in the business-as-usual scenario. The three blue lines trace the corresponding
quantiles in the mitigation policy scenario.
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The role of the heat capacity can also be understood in these terms. Firstly, as
discussed earlier, a lower heat capacity front-loads warming, thus increasing the value
of mitigation even in moderate warming scenarios. Secondly with a lower effective heat
capacity, a lower climate sensitivity will be sufficient to produce extreme warming within
the period of analysis. We are thus more likely to have extreme warming even with a
thinner tail of the climate sensitivity distribution. This is why the red lines keep shifting
higher and higher as we go from right to left in figure 5, and the value of mitigation
derives primarily from averting these more and more catastrophic possibilities. This is
also why the economic value of the policy increases so rapidly as we go from right to left
in table 2.

4 Discussion

Uncertainty about the shape of the fat upper tail of the climate sensitivity distribu-
tion can wreak havoc with economic analysis of climate policies. However, the climate
sensitivity matters only indirectly. Economic analysis is sensitive to the probability of
extreme warming, and high values of the climate sensitivity are only one of the factors
that lead to rapid warming. As we have shown, uncertainty about the effective heat
capacity also matters a great deal for economic analysis, and this uncertainty greatly
amplifies the economic consequences of uncertainty about the shape of the tail of the
climate sensitivity distribution.

With results like these, it is perhaps understandable that some have concluded the
risk of a climate catastrophe should be the sole determinant of climate policy (Pindyck,
2011). Whether one agrees with this assessment or not, it highlights the need to improve
our understanding of the relevant risks. It would be valuable to place a greater empha-
sis on exploring uncertainty about the probability of very high transient temperature
changes directly, which would entail a more inclusive discussion of the underlying phys-
ical uncertainties that accompany a rapidly warming world. A concrete example of this
is carbon cycle feedbacks, which, studies suggest, are both influenced by and themselves
influence the likelihood of higher or lower warming (Cox et al., 2000; Friedlingstein et al.,
2006).

A secondary conclusion relates to the importance of the damage function in economic
analysis. As we saw in section 3, with one damage function the expected value of the pol-
icy was rather insensitive to the probability of extreme warming, while another damage
function makes the economic analysis hypersensitive. This is because each damage func-
tion implicitly defines what level of warming is considered catastrophic, and uncertainty
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about extreme warming plays a profoundly different role in economic analysis depending
on how we define ‘catastrophic’. For all of the focus on the economics of catastrophic
climate change, surprisingly little attention has been paid to this issue. At a basic level,
we must try to understand better the limits of human adaptation to climate change.
A noteworthy example is provided by Sherwood and Huber (2010), who note that for
wet-bulb temperatures above 35◦C, dissipation of metabolic heat becomes impossible in
humans and mammals, causing hyperthermia and death. They proceed to estimate that
with an increase in global mean temperature of roughly 12◦C, most of todays population
would be living in areas that would experience wet-bulb temperatures of more than 35◦C
for extended periods. Given how important the limits of adaptation appear to be for
economic calculations, further exploration of such limitations may prove informative.

Our analysis indicates it would be especially valuable to gain a greater understanding
of both the physical and social processes associated with a much warmer world. The
proposed endeavour will necessarily be speculative in many respects. It will involve
trying to understand which physical feedbacks will become significant in the next few
centuries, and how much warming they can and cannot account for. It will require
that we both imagine and take seriously the social and demographic processes that
would accompany a quickly changing climate. The fat tail of the climate sensitivity
distribution has perhaps been an effective vehicle for bringing attention to the issue of
extreme warming, but it is time to move beyond this convenient metaphor and build a
scientific view of society in a rapidly warming world.
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